
  

Shader Applications

Michael Mehling / michel
Sebastian Gregor / gregsn

Node08

April, 11th 2008



  

Sorry for the noise, but...



  

Overview
● Introduction / Repetition

– Workflow
– Framework & Pipeline
– Spaces & Transformations
– Texture Formats

● Selected Applications
– „Canvas“ based
– Geometry based

● Daily Tools



  

Workflow
● Pencil & Paper

– What do i want to achieve?
– What do i need? (a good article, some math...)

● Patch (CPU) & Shader (GPU)
what has to be done where?

● Modularity
● Interfaces 

– of Patches
– of Shaders



  

Vertex Shader
run per vertex

      Rasterize
(find output pixels)

depth test & color blending

Effect

Patch

Renderer

e.g. Xfile
Mesh

View & 
Projection

Transforms

Pixel Shader
run per pixel

World 
Transform

Dx9 Texture

image

Texturesany
Paramet

ers

Framework / Pipeline



  

Spaces & Transformations
Object Space 

Coordinates relative to Object Center

World Space 
Coordinates relative to World Center

View Space 
Coordinates relative to Camera

Projection Space 
Coordinates relative to „Camera Sensor“

World 
Transform
tW

View 
Transform
tV

Projection 
Transform
tP

World-
View-
Projection 
Transform

tWVP

World-
View 
Transform

tWV

Object Space 
Coordinates relative to Object Center



  

Texture Formats
Channels

R = Red 

B = Blue

G = Green

A = Alpha

X = Not Used

L = Luminosity

U = ?

V = ?

W = ?

Q = ?

P = ?

Type

F = Float (7.2340)

„No F“ = values can 
only range from 
0..1 !

The number means 
how many bits

Specials

DXT1 - DXT4 = 
some 
compressed 
texture format

... = ?

examples:

● G16F = 16 bit for Green FLOAT! (-
unlimited to +unlimited)

● R8 = 8 bits for Red

● A2B10G10R10 =

– A2: upper most 2 bits for Alpha 
Channel (0, 0.333, 0.666, or 1)

– B10: next ten bits also for 0..1

– Next ten bits go to G ...



  

„Canvas“ Based Applications
● Image Post Processing

– Color Transforms
– Blending
– Halftoning
– Ascii Shader

● Feedback based
– Wave Shader

● Metaballs



  

„Canvas“ based



  

Pixelshader Tricks
When thinking of pixel shader programs we can think of a program acting on one pixel 

only,  which is much easier. All pixels behave in the same way...

In a „Canvas“ based shader we use a Fullscreen Quad (a quad scaled to cover the 
whole screen / scale = 2)

To access neighbouring pixels we need to calculate the texture coordinate offset.   

● PixelOffsetX = 1 / TextureWidth

● PixelOffsetY = 1 / TextureHeight

The Framework patch should support the effect with TextureWidth & TextureHeight info.

For that it is convenient to use a „Info (EX9.Texture)“ node.



  

„canvas“ based



  

„canvas“ based



  

Blending



  

Blend

Normal:
result = a x base + (1-a) x blend

Average:
result = (base + blend) / 2

Multiply:
result = base x blend

Add:
result = base + blend

Subtract:
result = base – blend

Difference:
result = abs(blend - base)

some examples:

base: sampled colour from base texture

blend:sampled colour from texture to 
blend to

result: resulting colour



  

Blend

imagemanipulations/blend.v4p



  

Halftoning



  

Halftoning

canvas size must then be a 
multitude of the base texture

e.g. 
base texture   128 x 96
block size       8 x 8
>> canvas 1024 x 768



  

Halftoning
have a look up texture of same size as canvas (1:1 sampling) with some information 
of the grid, e.g. each pixel's distance to block's center

now in pixel shader:
implement some compare function, to compare sampled color from base texture to 
grid structure

>> e.g. color brightness / density



  

Halftoning

halftoning/01_halftone_dots.v4p

halftoning/02_halftone_dots02.v4p

halftoning/03_halftone_lines.v4p

halftoning/04_halftone_lines_blurred.v4p

halftoning/halftone_dots_blurred.v4p



  

Ascii Shader

could we do that in a shader?



  

Ascii Shader

halftone shader with more complicated compare / look up / sampling

again, same scenario as before

base texture,

canvas

position look up table (!!)

ascii table

position relative 
to grid blocks 
origins

ascii characters sorted due to characters 
density (number of „black“ pixels) / block size



  

Ascii Shader

for every pixel:

● sample block's color from base texture

●calc. Ascii – char due to brightness of base texture texel

●get pixel's position within pixel's block

●knowing where Ascii char in Ascii table texture is + offset of pixel's position in it's block
>> sample texel from Ascii table



  

Ascii Shader

ascii/image2ascii.v4p



  

Pixelshader Tricks
When thinking of pixel shader programs we can think of a program acting on one pixel 

only,  which is much easier. All pixels behave in the same way...

In a „Canvas“ based shader we use a Fullscreen Quad (a quad scaled to cover the 
whole screen / scale = 2)

When feeding back the texture output back into the shader we now can access the last 
pixel at a certain postion by sampling the texture at the current texture coordinate.

To access neighbouring pixels we need to calculate the texture coordinate offset.   

● PixelOffsetX = 1 / TextureWidth

● PixelOffsetY = 1 / TextureHeight

The Framework patch should support the effect with TextureWidth & TextureHeight info.

For that it is convenient to use a „Info (EX9.Texture)“ node.



  

Wave Simulation
Goal: Render a Height Map of the wave

Each pixel represents the height of the wave at one position of the 
texture

The height at one pixel position is calculated depending upon
● The last height at that position
● The last height of neighbouring pixels
● The last velocity at that position

The maths is not the topic right now. It is now more about the 
framework. (Please look it up in the vvvviki)



  

Wave Simulation
Let's name 

● the height map of the last frame wave1

● the height map of the frame before the last frame wave2

The last height of the wave at a certain position
= sample wave1 at that pixel / texture coordinate.     

The last height in neighbouring pixels
= sample wave1 at the left, right, top and bottom pixels.

The last velocity at that position
= wave1 – wave2 at that position, 
   representing the change in height at that pixel.

So we really need to store two Height Maps to get that velocity also.



  

Metaballs



  

Metaballs



  

Metaballs

metaballs/metaballs01.v4p

metaballs/metaballs02.v4p

metaballs/metaballs03.v4p



  

Geometry based Applications
● Distortion
● Morphing



  

Geometry/Morphing



  

Geometry/Morphing



  

Geometry/Morph

requies careful creation oft he geometry, two vertexbuffers need to be of 
the same size, must both work with the same indexbuffer 



  

Geometry/Morph

morp/01_blendGeometry.v4p

morp/02_morphCubeSphere.v4p

morp/03_morphPoints.v4p

morp/04_morphWave.v4p

morp/05_morphGridSphere.v4p



  

Bonus Bloom

bloom/BloomDemo.v4p



  

Daily Tools
● VVVViki 

http://www.vvvv.org/tiki-index.php?page=Effects+Framework#Effect_Files
http://www.vvvv.org/tiki-index.php?page=node08.workshop.ShaderProgramming
http://www.vvvv.org/tiki-index.php?page=node08.workshop.ShaderApplications

● Pencil & Paper
● A little bit of Vector Math / Linear Algebra
● Book: Real Time Rendering, Tomas Akenine-Möller, Eric Haines 
● WWW: Paul Bourke



  

Remember the Canvas...

& the artist is you!


